Scientists another step closer to how life on Earth began.

Scientists are closing in on discovering how life got its start on planet Earth. The most recent breakthrough involved figuring out how to synthesize RNA in a way consistent with conditions at that time:

RNA is now found in living cells, where it carries information between genes and protein-manufacturing cellular components. Scientists think RNA existed early in Earth’s history, providing a necessary intermediate platform between pre-biotic chemicals and DNA, its double-stranded, more-stable descendant.

However, though researchers have been able to show how RNA’s component molecules, called ribonucleotides, could assemble into RNA, their many attempts to synthesize these ribonucleotides have failed. No matter how they combined the ingredients — a sugar, a phosphate, and one of four different nitrogenous molecules, or nucleobases — ribonucleotides just wouldn’t form.

Sutherland’s team took a different approach in what Harvard molecular biologist Jack Szostak called a “synthetic tour de force” in an accompanying commentary in Nature.

“By changing the way we mix the ingredients together, we managed to make ribonucleotides,” said Sutherland. “The chemistry works very effectively from simple precursors, and the conditions required are not distinct from what one might imagine took place on the early Earth.”

[…] They mixed the molecules in water, heated the solution, then allowed it to evaporate, leaving behind a residue of hybrid, half-sugar, half-nucleobase molecules. To this residue they again added water, heated it, allowed it evaporate, and then irradiated it.

At each stage of the cycle, the resulting molecules were more complex. At the final stage, Sutherland’s team added phosphate. “Remarkably, it transformed into the ribonucleotide!” said Sutherland.

According to Sutherland, these laboratory conditions resembled those of the life-originating “warm little pond” hypothesized by Charles Darwin if the pond “evaporated, got heated, and then it rained and the sun shone.”

This is a huge breakthrough and puts us one step closer to solving the puzzle. The most amazing part is that it appears as though life is an inherent result of basic chemistry:

Intriguingly, the precursor molecules used by Sutherland’s team have been identified in interstellar dust clouds and on meteorites.

“Ribonucleotides are simply an expression of the fundamental principles of organic chemistry,” said Sutherland. “They’re doing it unwittingly. The instructions for them to do it are inherent in the structure of the precursor materials. And if they can self-assemble so easily, perhaps they shouldn’t be viewed as complicated.”

It seems that given the right conditions, conditions that may be more common than we realize, life is inevitable.

4 thoughts on “Scientists another step closer to how life on Earth began.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.